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Certain aspects of the �linear and nonlinear� stability of sheared relativistic �slab� jets are analyzed. The
linear problem has been solved for a wide range of jet models well inside the ultrarelativistic domain �flow
Lorentz factors up to 20, specific internal energies �60c2�. As a distinct feature of our work, we have
combined the analytical linear approach with high-resolution relativistic hydrodynamical simulations, which
has allowed us �i� to identify, in the linear regime, resonant modes specific to the relativistic shear layer, �ii� to
confirm the result of the linear analysis with numerical simulations, and �iii� more interestingly, to follow the
instability development through the nonlinear regime. We find that very-high-order reflection modes with
dominant growth rates can modify the global, long-term stability of the relativistic flow. We discuss the
dependence of these resonant modes on the jet flow Lorentz factor and specific internal energy and on the
shear-layer thickness. The results could have potential applications in the field of extragalactic relativistic jets.
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I. INTRODUCTION

The Kelvin-Helmholtz �KH� instability �in the simplest
case, that of a tangential discontinuity of velocity at the in-
terface of parallel flows� is one of the classical instabilities in
fluid dynamics. Linear perturbation analysis of KH instabil-
ity has been presented for many situations including incom-
pressible and compressible fluids, surface tension, finite
shear layers, and magnetized fluids �1�.

The linear analysis of the KH instability for fluids in rela-
tivistic relative motion �infinite, single-vortex-sheet approxi-
mation� was developed in the 1970s in the context of the
stability of jets in extended extragalactic radio sources �2�.
The main conclusion of these studies was the reduction of
the maximum growth rate for increasing relative Lorentz fac-
tor flows and decreasing specific internal energies �or sound
speeds�. The general dispersion relation for relativistic cylin-
drical jets was obtained and solved for a range of parameter
combinations of astrophysical interest �3,4�. Some approxi-
mate analytical expressions were derived �5�. General nu-
merical solutions of the dispersion relation were analyzed �6�
and the results were applied for the first time to the interpre-
tation of the morphology of jets in extended radio sources
and the motion of radio components in the inner part of these
objects. Stability analysis �both in nonrelativistic and relativ-
istic regimes� at KH instability has been used to interpret
many phenomena observed in astrophysical jets such as qua-
siperiodic wiggles and knots, filaments, limb brightening,
and jet disruption �7,8�. More recently, KH linear stability
analysis applied to very-high-resolution observations was
used to probe the physical parameters in these sources �9�.

A general treatment of the KH instability with compress-
ible shear layers in the case of infinite plane boundary �non-
relativistic� problems was proposed �10�. The study of the

effects of shear layers was extended to the case of infinite
slab jets �11�, concentrating on the wave number range
0.1/Rj �k�10/Rj �Rj is the jet radius� for ordinary �nx=0�
and the first-reflection �nx=1,2 ,3� symmetric and antisym-
metric modes �nx represents the number of nodes across the
planar jet�.

An attempt to investigate the growth of the KH instability
in some particular class of cylindrical relativistic sheared jets
was pursued �12�. However, it was limited to the ordinary
�nr=0� and first two reflection modes �nr=1,2�, and the do-
main of jet parameters considered involved only marginally
relativistic flows �beam flow velocities �0.1c, where c is the
speed of light� and nonrelativistic �jet, ambient� sound
speeds ��0.01c�. Other approaches to the linear analysis of
the stability of relativistic stratified jets �13� and sheared,
ultrarelativistic jets �14� have also been performed. In the
latter reference, the author has derived approximated formu-
las for instability modes excited in the shear layer.

In this paper, we report on certain aspects of the stability
of sheared relativistic �slab� jets in linear and nonlinear re-
gimes. We have considered a wide range of jet and ambient
parameters reaching well inside the ultrarelativistic domain
�jet flow Lorentz factors up to 20, jet specific internal ener-
gies �60c2�. Instead of focusing on the stabilization effect of
the shear layer on the ordinary modes alone �12�, we have
also studied the properties of very-high-order �nx�20� re-
flection modes which have the largest growth rates and then
dominate the global stability properties of the flow. Finally,
we have combined the analytical linear approach with high-
resolution relativistic hydrodynamical simulations which
have allowed us �i� to confirm the results obtained with the
linear analysis and �ii� to follow the instability development
through the nonlinear regime. Our selection of the two-
dimensional slab geometry for our work responds to several
reasons: �i� the possibility of using larger resolutions in two-
dimensional simulations, compared to fully three-
dimensional simulations, �ii� the fact that slab jets allow for*Electronic address: perucho@mpifr-bonn.mpg.de
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the study of symmetric and antisymmetric modes, contrary to
cylindric geometry, which only allows for symmetric struc-
tures, �iii� it is easier to solve the linear problem equation
and to interpret results from the numerical simulations in this
case, so we can gain deep knowledge of the physics of in-
stabilities before studying more complex �including three di-
mensions, magnetic fields, etc.� problems. Several recent
works have combined linear analysis and hydrodynamical
simulations in connection with several astrophysical sce-
narios �i.e., relativistic jets �15� and �-ray bursts �16��, the
relativistic nature of the jet parameters considered �that in-
cludes the ultrarelativistic limit�, the modes explored �very-
high-order reflection modes�, and the complementarity of
linear analysis and nonlinear high-resolution simulations
make the present work unique. The results of the numerical
simulations in the nonlinear regime are presented elsewhere
�17�. The results shown in this paper concerning the stability
of relativistic sheared flows could be of potential interest in
the field of extragalactic relativistic jets.

II. INSTABILITIES IN SHEARED RELATIVISTIC JETS:
LINEAR ANALYSIS

We start with the equations governing the evolution of a
slab relativistic perfect-fluid jet for which the energy-
momentum tensor can be written as

T�� = ��e + P�u�u� + P��� �1�

�units have been used so that c=1; Greek indices � and � run
from 0 to 3�, where �e is the energy density, P the pressure,
and u� the fluid four-velocity. The tensor ��� is the metric
tensor describing the geometry of the fixed, flat space-time
where the fluid evolves. In the following we will use u�

=��1,v��, � being the Lorentz factor, �=1/�1−v2.
The initial equilibrium configuration is that of a steady

slab jet in Cartesian coordinates flowing along the z coordi-
nate, surrounded by a denser and colder ambient medium. A
single-component ideal gas equation of state with adiabatic
exponent 	=4/3 has been used to describe both jet and am-
bient media. Both media are in pressure equilibrium and are
separated by a smooth shear layer of the form �11�

a�x� = a
 + �a0 − a
�/cosh�xm� , �2�

where a�x� is the profiled quantity �vz and � the rest mass
density� and a0 and a
 its values at the jet symmetry plane
�at x=0� and at x→
, respectively. The integer m controls
the shear layer steepness. In the limit m→
 the configura-
tion tends to the vortex-sheet case.

We now introduce an adiabatic perturbation of the form
�g�x�exp�i�kzz−�t�� in the flow equations, � and kz being
the frequency and wave number of the perturbation along the
jet flow. We shall follow the temporal approach, in which
perturbations grow in time, having real wave numbers and
complex frequencies �the imaginary part being the growth
rate�. The number of nodes across the planar jet, nx, distin-
guishes between ordinary modes �corresponding to nx=0�
and reflection modes �nx0�. By linearizing the equations
and eliminating the perturbations of rest mass density and

flow velocity, a second-order ordinary differential equation
for the pressure perturbation P1 is obtained �18�:

P1� + �2�0
2v0z� �kz − �v0z�

� − v0zkz
−

�e,0�

�e,0 + P0
�P1�

+ �0
2� �� − v0zkz�2

cs,0
2 − �kz − �v0z�2�P1 = 0, �3�

where �e,0 is the energy density of the unperturbed model, P0
the pressure, v0z the three-velocity component, �0

=1/�1−v0z
2 the Lorentz factor, and cs,0 the relativistic sound

speed. The prime denotes the x derivative. Unlike the vortex-
sheet case, in the case of a continuous velocity profile, a
dispersion relation cannot be written explicitly. Equation �3�
is integrated from the jet axis, where boundary conditions on
the amplitude of pressure perturbation and its first derivative
are imposed:

P1�x = 0� = 1, P1��x = 0� = 0�symmetric modes� ,

P1�x = 0� = 0, P1��x = 0� = 1�antisymmetric modes� .

�4�

Solutions satisfying the Sommerfeld radiation conditions �no
incoming waves from infinity and wave amplitudes decaying
towards infinity� are found with the aid of the method pro-
posed in Ref. �19�, based on the shooting method �20�.

We have solved the linear problem for more than 20 mod-
els with different specific internal energies of the jet, Lorentz
factors, and shear-layer widths, fixing the jet and ambient
rest-mass density contrast �=0.1�. We used m=8,25,2000
�shear layer width d��0.6,0.177,5�10−3�Rj� and vortex
sheets for jets having specific internal energies � j =0.4c2

�models B� and 60c2 �models D� and Lorentz factors � j =5 �
B05, D05� and 20 �B20, D20�. Solutions with m=2000 were
considered in order to test the convergence to the vortex
sheet in the case of narrow shear layers, with positive results.
Also, fixing the width of the shear layer by setting m=25, we
solved for � j =0.7c2 �model A�, along with models B and D,
using � j =2.5 and 10, in order to span a wide range of pa-
rameters �21�.

The effect of the shear layer on the linear stability is seen
in Fig. 1 where we show the growth rates of the fundamental
and a series of reflecting �antisymmetric� modes resulting
from the solution of Eq. �3� together with the boundary con-
ditions �4� for model D20. The corresponding solution for
the vortex-sheet case is also shown for comparison.

We note that the reflection-mode solutions of the shear
problem are more stable �i.e., the growth rates are smaller�
for most wave numbers, especially in the large-wave-number
limit, than the corresponding solutions in the vortex-sheet
case. This behavior was reported for the first time for the
first- and second-reflection modes in the nonrelativistic limit
�11�. The growth rate curves corresponding to a single nth
reflection mode consist of a broad maximum at larger wave
numbers and a local peak which is placed in the small-wave-
number limit, near the marginal stability point of the mode.
While in the relativistic-jet, vortex-sheet case the small-
wave-number peaks are relatively unimportant �since the
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maximum growth rates at these peaks are lower than the
growth rates of other unstable modes�, in the presence of the
shear layer they significantly dominate over other modes.
Therefore we shall call these peaks the shear-layer reso-
nances �22�. In Fig. 2 we show the solution for four specific
symmetric modes �two low-order and two high-order reflec-
tion modes� of model D20. Low-order modes do not show
strong peaks at maximum unstable wavelengths, whereas
high-order reflection modes show peaks �the so-called shear-
layer resonances� at this maximum wavelength and do not
present broad maxima. The dependence of the properties of
the growth rates associated with the shear-layer resonances
on the jet-specific internal energy, jet Lorentz factor, and
shear-layer parameter m can be summarized as follows: �i�
An increase of the jet Lorentz factor enhances the dominance
of resonant modes with respect to ordinary and low-order
reflection modes; �ii� a decrease in the specific internal en-
ergy of the jet causes resonances to appear at longer wave-
lengths; �iii� a widening of the shear layer reduces the growth
rates and the dominance of the shear-layer resonances, sug-
gesting that there is an optimal width of the shear layer that
maximizes the effect, for a given set of jet parameters; �iv� as

the shear layer widens, the largest growth rate of resonant
modes moves towards smaller wave numbers and lower-
order reflection modes; �v� modes with wave number larger
than some limiting value that decreases with the shear-layer
width are damped significantly, consistent with previous non-
relativistic results �11�.

The shear-layer resonances correspond to very distinct
spatial structures of eigenmodes. In Fig. 3, we show maps of
different structures generated in a jet by pressure perturba-
tion, depending on the excited KH mode, as derived by
theory and simulations. The structure of maximally unstable
eigenmodes in the vortex-sheet case and nonresonant modes
in the sheared case �upper panel of Fig. 3� represents a su-
perposition of oblique sound waves in both the jet interior
and the ambient medium. Contrarily, in the shear-layer case
�central panel of Fig. 3�, the most unstable resonant modes
have a very large transversal wave number �the transversal
wavelength is comparable to the width of the shear layer� in
the jet interior and they are strongly damped in amplitude in
the ambient medium. In order to demonstrate the relevance
of the resonant modes in the evolution of the flow, we dis-
play in the bottom panel of Fig. 3 an analogous pressure map
resulting from a numerical hydrodynamical simulation �23�.
In this simulation an equilibrium jet corresponding to model
D20 with m=25 �the value of m is 25 for all numerical
simulations presented here, unless explicitly indicated� has
been perturbed with a superposition of small-amplitude sinu-
soidal perturbations. The pressure snapshot displayed in the
right panel of Fig. 3 corresponds to an early stage of the
evolution in which the perturbation is still small �linear
phase�. The resonant mode starts to dominate in the numeri-
cal simulation due to its large growth rate, and its spatial
structure is very similar to that of the most unstable �reso-
nant� eigenmode obtained from the corresponding linear
problem �central panel of Fig. 3�.

FIG. 1. Growth rate vs longitudinal wave number for model
D20, using a shear layer with m=25 in Eq. �2� �panel �a�� and
vortex sheet �panel �b�� for the fundamental and a series of reflec-
tion, antisymmetric modes including the one with the absolute
maximum in the growth rate. The main differences are the overall
decrease of growth rates in the sheared case and the appearance in
this case of sharp resonances at the small-wave-number limit for
each high-order reflection mode with the largest growth rates for a
given mode.

shear layer
resonances

broad maxima

small wave number
peaks

FIG. 2. Specific symmetric modes of model D20. Dotted line:
first reflection mode. Dashed line: second reflection mode. Dash-
dotted line: 20th reflection mode. Dash-triple dotted line: 25th re-
flection mode. We point out both the broad maxima and the small-
wave-number peaks present in every single mode. Small-wave-
number peaks of high-order reflection modes show larger growth
rates and thus are defined as �shear-layer� resonances.
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Figure 4 shows two radial plots of the pressure perturba-
tion, corresponding to model D20 introduced in the previous
paragraph, at two different times �panels �a� and �b�� during

the linear phase, before �panel �a�� and after �panel �b�� the
resonant modes become dominant in the jet structure, em-
phasizing the conclusions derived from Fig. 3. A clear
change in the transversal structure of the perturbation is ob-
served, where the radial structure �small radial wavelength�
of the growing resonant mode is displayed in the right panel
�c� of Fig. 4. In Fig. 4�c�, the theoretical profile of the fastest-
growing resonant mode, at the wavelength found in the
simulation, is shown. The number of zeros in the central and
bottom panels is the same �29 in both cases�, implying a
correct identification of the mode �29th body mode�. A dif-
ference in the amplitude profile of the mode is observed be-
tween this theoretical structure and that found in the simula-
tions �Fig. 4�b��. This is due to a growth of the modes faster
than predicted by the theory in the shear layer, which might
be caused by interactions between waves. The modulation of

FIG. 3. Two-dimensional panels of different pressure perturba-
tion structures for model D20. The gray scale extends over the
pressure variations �in arbitrary units�. Lengths are measured in
�initial� jet radii Rj. Flow is from left to right and periodical. The
bottom boundary corresponds to the jet symmetry plane. Top panel:
vortex-sheet dominant mode �low-order reflection mode� at a given
wavelength �from linear solution�. Central panel: dominant mode
�high-order reflection mode� at the same wavelength when m=25
�Eq. �2�� shear layer is included �also from a linear solution�. Bot-
tom panel: pressure perturbation map from a hydrodynamical simu-
lation in the linear regime. The resolution used in the simulation
was 256 cells/Rj across the jet and 32 cells/Rj, along. Grid size was
6Rj transversally and 8Rj axially, with an extended, decreasing
resolution, grid in the transversal direction up to 100Rj. Periodic
boundary conditions were applied at the left and right ends of the
grid and outflow boundary conditions far from the jet in the trans-
versal direction.

FIG. 4. Radial plots of pressure perturbation �P− P0, with P0

=2.0�extc
2� at two different times in the simulation for model D20

�see the caption of Fig. 3 for details� and a theoretical representation
of the transversal structure of the fastest-growing resonant mode, at
the wavelength observed in the simulation, in arbitrary units �panel
�c��. The top panel �a� shows the perturbation in a moment when the
resonant modes have not yet appeared, and the central panel �b�
shows a moment when the resonant modes dominate the linear re-
gime. The solid line stands for the pressure perturbation at z=0Rj,
and the dotted line stands for the pressure perturbation at half grid
z=4Rj.
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amplitudes observed in Fig. 4�b� for radii r�0.8Rj gives
support to the idea of interference between modes.

III. NONLINEAR EVOLUTION

The importance of the shear-layer resonant modes relies
not only on their dominance among solutions of the linear-
ized problem. The numerical simulations show that when-
ever these modes appear �mostly in models with both high

Lorentz factor and high relativistic Mach number� the tran-
sition of the overall perturbed jet structure to the nonlinear
regime is significantly altered. In Fig. 5 we show how the
resonant modes affect the nonlinear evolution of instabilities
in jets with larger Lorentz factors and relativistic Mach num-
bers. The maps represent schlieren plots for model B20 ��
=20, left panels� and model B05 ��=5, right panels�. Model
B20 shows a well-collimated jet with only small-scale varia-
tions in time, due to the development of resonant modes,

FIG. 5. Schlieren plots at different times in the nonlinear regime for models B20 �left panels�, at times t= �600,700,720�Rj /c and B05
�right panels� at times t= �325,375,510�Rj /c. Shear-layer resonances shield the jet in model B20 against disruption. Grid size was 6Rj

transversally and 16Rj axially in these simulations �see the caption of Fig. 3 for further details�.
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whereas the jet in model B05 undergoes strong sideways
oscillations which lead to the formation of strong oblique
shocks �first panel� and the subsequent jet disruption.

By analyzing the long-term simulation results we find that
those jets for which the resonant modes start to dominate
early in the simulation do not disrupt, but instead widen and
develop a thick long-standing layer of very large specific
internal energy. An example of this behavior is shown in Fig.
6 where we show panels corresponding to the pressure, jet
mass fraction �tracer�, specific internal energy, and flow Lor-
entz factor for model D20 once an asymptotic quasisteady
state has been reached. For comparison, Fig. 7 shows the
equivalent set of panels to those in Fig. 6 for the vortex-sheet
approximation case �m=50�. Morphological and quantitative
differences, as entrainment and jet disruption, are clearly ob-
served. We thus find that these resonant modes shield jets

against disruption. The presence of the hot boundary layer as
well as the shear-layer resonant modes characterized by short
radial wavelengths modify the interaction of the long-
wavelength sound waves with the jet boundaries. Other facts
pointing towards the nonlinear stabilizing role of the shear
layer resonant modes are shown in Fig. 8, where the evolu-
tion of the normalized total longitudinal momentum and the
width of the mixing layer are shown as a function of time. At
the end of the simulation �at time t=1000Rj /c, well inside
the nonlinear regime� model D20, with m=25, has trans-
ferred less than 4% of the axial momentum to the ambient
medium, while in the corresponding vortex-sheet case it has
transferred as much as 40% of the axial momentum at time
t=595Rj /c �see Figs. 6 and 7�. The width of the mixing layer
developed by this model in both the vortex-sheet limit and
sheared-flow cases also points to the stabilizing role of the

FIG. 6. Two-dimensional pan-
els of the logarithm of pressure
�top left�, tracer �top right�, loga-
rithm of specific internal energy
�bottom left�, and Lorentz factor
�bottom right� of model D20 at t
=1000Rj /c, well inside the non-
linear regime and once an
asymptotic quasisteady state has
been reached. Lengths are mea-
sured in �initial� jet radii Rj. Initial
tracer values are 1.0 for pure jet
matter and 0.0 for pure ambient
matter. As seen in the tracer panel,
the final width of the jet is 3 times
the initial one. A thick shear layer
with high specific internal energy
is observed in the bottom left
panel.

x

x

x
FIG. 7. Two-dimensional pan-

els of the pressure �top left�, tracer
�top right�, logarithm of specific
internal energy �bottom left�, and
Lorentz factor �bottom right� of
model D20, in the vortex-sheet
analytical limit, at t=595Rj /c.
Compare with Fig. 6.
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shear-layer resonant modes. Whereas in the vortex case the
mixing layer grows radially up to 4Rj with an expansion
velocity 	0.01c, in the sheared case it only develops up to
1.2Rj and with a much smaller expansion velocity 	1.2
�10−3c. The width of the mixing layer is computed as the
distance between the outermost radius where the tracer �jet
mass fraction� value is 0.95 and the innermost radius where
its value is 0.05. Thus, the fall in the width of the mixing
layer for the vortex case �dotted line in the plot� at the latest
times of the simulation �t= �500–600�Rj /c� is not due to a
real reduction of this width, but to the fact that there are
portions of pure jet material �where the tracer value is 1�
moving at large radii and close to regions of the grid where
the external medium material prevails �tracer�0�, as can be
seen in Fig. 7. This is just an artifact of the way in which the
width of the mixing layer is computed.

IV. DISCUSSION

A. Nature of resonant modes

We have analyzed under general conditions the effect of
shear on the stability properties of relativistic flows. The lin-
ear analysis has allowed us to discover resonant modes spe-
cific to the relativistic shear layer that have the largest
growth rates. These modes are found to develop in high Lor-
entz factor and relativistic Mach number jets. The effects of
the growth of these modes in the nonlinear stability of rela-
tivistic flows have been probed by a series of high-resolution
hydrodynamical simulations.

Fourier analysis of the results of the numerical simulation
shows that the fastest-growing mode corresponds to the one
expected from the linear analysis. The growth rates found in
the simulations are of the order of those predicted by linear
theory close to the jet axis, but larger by factors ranging from
1.4 to 2.0 in the shear layer, depending on the jet parameters,
than those predicted by the solutions to the linear stability
problem, which might be due to nonlinear interactions be-
tween the perturbation waves in the shear layer.

Urpin �14� has studied the growth of instabilities in
sheared jets. In �14� an analytical approach was done for the
case of cold fluid jets with a velocity shear. One of the most
important conclusions derived from that work is that the
shear-layer instabilities found may grow faster than the KH
instabilities in the vortex-sheet approximation �this fact was
first pointed out by �12��. The similarities between the insta-
bilities reported in this paper and those studied by Urpin �14�
are found to be that �i� the growth rates are larger for hotter
jets, �ii� the growth rates decrease for faster jets, and �iii�
these instabilities are dominant for higher order modes. The
resonant modes reported in this paper represent a manifesta-
tion of the so-called shear-driven instabilities, which were
also reported by Urpin �14� for a specific set of physical
conditions in the jet. However, the work reported in the
present paper includes a wider set of jet parameters and sup-
port of the results of numerical simulations and solutions
�found via numerical methods� of the differential equation of
pressure perturbation. The latter permits a deeper analysis of
the linear phase of growth of the instabilities. Also, the
method developed in this paper is valid for any shape of the
shear layer.

B. Formation of hot layers

The formation of a hot boundary layer surrounding the
inner core of the jet as a consequence of the growth of reso-
nant modes has been reported in the previous section on the
nonlinear regime. In this section, the formation of such hot
boundaries is explained.

The parallel and perpendicular wavelengths of the shear-
layer resonant modes, �z and �x, respectively, are both small
��Rj� with �x��z. Therefore their wave vectors are almost
perpendicular to the jet axis, and thus the waves propagate
from the shear layer towards the jet axis. On the other hand,
the resonant modes have large growth rates, exceeding the
growth rate of other modes, so they start to dominate the
evolution. In �21� it was shown that the growth of instabili-
ties goes through three main stages: linear phase, saturation
phase, and nonlinear phase. The saturation of the linear
growth of KH instabilities in relativistic flows is stopped
when the amplitude of the velocity perturbation reaches the
speed of light in the jet reference frame. As the maximum
amplitude is reached, the sound waves propagating towards
the jet axis �in the jet reference frame� steepen and form
shock fronts. The fluid particles moving outwards from the
jet interior cross the shock, decelerate, and increase their
internal energy. In addition, turbulent motions of particles, as
they go through shocks and generate small-scale velocity
variations, also contribute to the conversion of kinetic energy

FIG. 8. Top panel �a� shows the evolution of the total longitu-
dinal momentum, normalized to the initial value of the simulation,
as a function of time, for the vortex-sheet analytical limit simulation
�dotted line� and for the sheared-jet simulation �dashed line�. The
bottom panel �b� shows the width of the mixing layer, measured as
the radial distance between tracer values of 0.95 and 0.05. The lines
represent the same models as in panel �a�.
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FIG. 9. Radial plots of pressure perturbation
�P− P0, with P0=2.0�extc

2, panels �a�–�f�� and
specific internal energy ��−�0, with �0=60.0c2,
panels �g�–�l�� at different times in simulation of
model D20. The solid line stands for the pressure
perturbation at z=0Rj, and the dotted line stands
for the pressure perturbation at half grid z=4Rj.
The plots show how the steepening of the pres-
sure waves and dissipation in shocks leads to
heating of the shear layer. Note the different
scales �increase of the maxima with time� for the
specific internal energy perturbation plots.
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into internal energy. Figure 9 illustrates the process of gen-
eration of the hot shear layer which protects the central core
of the jet at the end of the linear regime for model D20. In
the left panels �panels �a�–�f�� we display radial plots of the
pressure perturbation at different times in the transition from
the linear to the nonlinear regime. The plots show how the
maxima of the pressure perturbation appear in the shear layer
and how the waves steepen. In the right panels ��g�–�l�� we
display radial plots of the perturbation in specific internal
energy and show how the shocks produced by the steepening
of the waves expand and heat the shocked material in the
shear layer.

V. IMPLICATIONS FOR EXTRAGALACTIC JETS

Our results offer an explanation to the morphological
FRI-FRII dichotomy of large-scale extragalactic radio jets
�24� and its present paradigm. This dichotomy consists of a
morphological classification of extragalactic jets, being FRII
sources those showing a high collimation and bright hot spot
at the point of collision with the ambient and FRI sources
those showing a diffuse and decollimated morphology in
their outer regions. The latter have been interpreted as due to
jet disruption and mass loading of the original flow �25�. The
growth of the shear-layer resonances in the highly relativistic
models considered in this paper can explain the remarkable
collimation and stability properties of powerful radio jets.
Current theoretical models �25� interpret FRI morphologies
as the result of a smooth deceleration from relativistic ��
�3 �26�� to nonrelativistic transonic speeds �	0.1c� on kpc
scales. On the contrary, radio-flux asymmetries between jets
and counterjets in the most powerful radio galaxies and qua-
sars �FRII� indicate that relativistic motion ��	2–4 �27��
extends up to kpc scales in these sources. In addition, current
models for high-energy emission from powerful jets at kpc
scales �28� offer additional support to the hypothesis of rela-
tivistic bulk speeds on these scales. This whole picture is in
agreement with the results presented here as the development
of resonant, stabilizing modes occurs in faster jets, while
slower jets appear to be disrupted by entrainment of ambient
material and slowed down to v�0.5c during their evolution.

These conclusions point to an important contribution by in-
trinsic properties of the source to the morphological di-
chotomy. Nevertheless, the importance of the ambient me-
dium cannot be ruled out on the basis of our simulations,
since we consider an infinite jet in pressure equilibrium flow-
ing in an already open funnel and surrounded by a homoge-
neous ambient medium.

There are plenty of arguments indicating the existence of
transversal structure in extragalactic jets at all scales
�9,17,29�. We have found the development of relatively thin
��2Rj�, hot shear layers in models affected by the growth of
resonant modes to nonlinear amplitudes, as discussed in this
paper. These hot shear layers could explain several observa-
tional trends in the transversal structure of powerful jets at
both parsec and kiloparsec scales �29�. Conversely and ac-
cording to our simulations, these transition layers could be
responsible for the stability of fast, highly supersonic jets,
preventing the mass loading and subsequent disruption.
Thicker, mixing layers formed in slower jets could mimic the
transition layers invoked in models of FRIs �25�.

Direct comparison of our results with real jets is, how-
ever, still difficult due to the slab geometry of the problem
studied here and to the fact that magnetic fields are not con-
sidered in our work. The latter are known to be present in
extragalactic jets and even to be dynamically important for
the evolution of compact jets. Several authors have studied
their influence on the stability these objects �30�. The inclu-
sion of magnetic fields and three-dimensional cylindrical ge-
ometries in linear calculations and numerical simulations is a
natural further step in our work.

ACKNOWLEDGMENTS

Calculations were performed on the SGI Altix 3000 com-
puter CERCA at the Servei d’Informàtica de la Universitat
de València. This work was supported by the Spanish DGES
under Grant No. AYA-2001-3490-C02 and Conselleria
d’Empresa, Universitat i Ciencia de la Generalitat Valenciana
under Project No. GV2005/244. M.P. benefited from support
from the Universitat de València �V Segles program� and the
Max-Planck-Institut für Radioastronomie in Bonn.

�1� S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability
�Clarendon Press, Oxford, 1961�; A. E. Gill, Phys. Fluids 8,
1428 �1965�; R. A. Gerwin, Rev. Mod. Phys. 40, 652 �1968�.

�2� B. D. Turland and P. A. G. Scheuer, Mon. Not. R. Astron. Soc.
176, 421 �1976�; R. D. Blandford and J. E. Pringle, ibid. 176,
443 �1976�.

�3� A. Ferrari et al., Astron. Astrophys. 64, 43 �1978�.
�4� P. Hardee, Astrophys. J. 234, 47 �1979�.
�5� P. Hardee, Astrophys. J. 313, 607 �1987�.
�6� P. Hardee, Astrophys. J. 318, 78 �1987�.
�7� E.g., P. E. Hardee, Astrophys. J. 250, 9 �1981�; P. E. Hardee

and M. L. Norman, ibid. 342, 680 �1989�; J.-H. Zhao et al.,
ibid. 387, 69 �1992�.

�8� Pinching KH modes generate radio knots with distinct kine-

matical properties �I. Agudo et al., Astrophys. J., Lett. Ed.
549, 183 �2001��; The instabilities forced by precession and
wave-wave interactions can explain differentially moving fea-
tures in the jets; �P. E. Hardee et al., Astrophys. J. 555, 744
�2001��; It was possible to interprete the structure and motions
of the 3C120 jet �0.6—300 pc� on the basis of KM instabilities
�R. C. Walker et al., ibid. 556, 756 �2001��; The internal struc-
ture and dynamics of the M87 jet were understood using the
KH linear analysis �A. P. Lobanov et al., New Astron. Rev. 47,
629 �2003��.

�9� A. P. Lobanov and J. A. Zensus, Science 294, 128 �2001�.
�10� W. Blumen et al., J. Fluid Mech. 71, 305 �1975�; P. G. Drazin

and A. Davey, ibid. 82, 255 �1977�.
�11� A. Ferrari et al., Mon. Not. R. Astron. Soc. 198, 1065 �1982�.

RESONANT KELVIN-HELMHOLTZ MODES IN SHEARED… PHYSICAL REVIEW E 75, 056312 �2007�

056312-9



�12� M. Birkinshaw, Mon. Not. R. Astron. Soc. 252, 505 �1991�.
�13� M. Hanasz and H. Sol, Astron. Astrophys. 315, 355 �1996�.
�14� V. Urpin, Astron. Astrophys. 385, 14 �2002�.
�15� A. Rosen et al., Astrophys. J. 516, 729 �1999�; P. E. Hardee,

ibid. 533, 176 �2000�; P. E. Hardee et al., ibid. 555, 744
�2001�.

�16� M. A. Aloy et al., Astron. Astrophys. 396, 693 �2002�.
�17� M. Perucho, J. M. Martí, and M. Hanasz, Astron. Astrophys.

443, 863 �2005�.
�18� The equation was first derived by M. Birkinshaw, Mon. Not.

R. Astron. Soc. 208, 887 �1984�.
�19� S. Roy Choudhury and R. V. E. Lovelace, Astrophys. J. 283,

331 �1984�.
�20� W. H. Press et al., Numerical Recipes �Cambridge University

Press, Cambridge, England, 1997�.
�21� The notation for the models follows that of M. Perucho et al.,

Astron. Astrophys. 427, 415 �2004� and M. Perucho et al.,
ibid. 427, 431 �2004� where the linear and nonlinear stability
of relativistic planar jets in the vortex-sheet case was investi-
gated.

�22� Some resonances due to the presence of a shear layer �12� or a
sheath surrounding relativistic jet component �13� could ap-
pear as oscillations �ripples� on the growth rate curve in the
large-wave-number limit; however, we do not observe oscilla-
tions of this type in our case. These ripples could be related to
the presence of discontinuities in the jet-ambient transition, to

the shape of the shear layer, or associated with a different
region in parameter space.

�23� Numerical simulations were performed using a finite-
difference code based on a high-resolution shock-capturing
scheme which solves the equations of relativistic hydrodynam-
ics written in conservation form �J. M. Martí et al., Astrophys.
J. 479, 151 �1997��. The code was recently parallelized using
open-message passing �OMP� directives.

�24� B. L. Fanaroff and J. M. Riley, Mon. Not. R. Astron. Soc. 167,
31 �1974�.

�25� R. A. Laing and A. H. Bridle, Mon. Not. R. Astron. Soc. 336,
328 �2002�; 336, 1161 �2002�.

�26� T. J. Pearson, in Energy Transport in Radio Galaxies and Qua-
sars, edited by P. E. Hardee, A. H. Bridle, and J. A. Zensus
�ASP Conference Series, San Francisco, 1996�, p. 97.

�27� A. H. Bridle et al., Astrophys. J. 108, 766 �1994�.
�28� A. Celotti and R. D. Blandford, in Proceedings of Black Holes

in Binaries and Galactic Nuclei, edited by L. Kaper, E. P. J.
van den Heuvel, and A. P. Woudt �Springer, Berlin, 2001�, p.
206.

�29� M. R. Swain et al., Astrophys. J. 508, L29 �1998�; J. M. At-
tridge et al., Astrophys. J., Lett. Ed. 518, 87 �1999�.

�30� See P. E. Hardee, in Relativistic Jets, edited by P. A. Hughes
and J. N. Bregman �AIP, Melville, NY, 2006�, p. 57, and ref-
erences therein.

PERUCHO et al. PHYSICAL REVIEW E 75, 056312 �2007�

056312-10


